Abstract

Cryopreservation, one of the most effective preservation methods, is essential for maintaining the safety and quality of food. However, there is no denying the fact that the quality of muscle food deteriorates as a result of the unavoidable production of ice. Advancements in cryoregulatory materials and techniques have effectively mitigated the adverse impacts of ice, thereby enhancing the standard of freezing preservation. The first part of this overview explains how ice forms, including the theoretical foundations of nucleation, growth, and recrystallization as well as the key influencing factors that affect each process. Subsequently, the impact of ice formation on the eating quality and nutritional value of muscle food is delineated. A systematic explanation of cutting-edge strategies based on nucleation intervention, growth control, and recrystallization inhibition is offered. These methods include antifreeze proteins, ice-nucleating proteins, antifreeze peptides, natural deep eutectic solvents, polysaccharides, amino acids, and their derivatives. Furthermore, advanced physical techniques such as electrostatic fields, magnetic fields, acoustic fields, liquid nitrogen, and supercooling preservation techniques are expounded upon, which effectively hinder the formation of ice crystals during cryopreservation. The paper outlines the difficulties and potential directions in ice inhibition for effective cryopreservation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.