Abstract
The coexisting mechanism of a synthetic bacterial community (SBC) was investigated to better understand how to manage microbial communities. The SBC was constructed with three kinds of phenol-utilizing bacteria, Pseudomonas sp. LAB-08, Comamonas testosteroni R2, and Cupriavidus sp. P-10, under chemostat conditions supplied with phenol as a sole carbon and energy source. Population densities of all strains were monitored by real-time quantitative PCR (qPCR) targeting the gene encoding the large subunit of phenol hydroxylase. Although the supply of phenol was stopped to allow perturbation in the SBC, all of the strains coexisted and the degradation of phenol was maintained for more than 800 days. The qPCR analyses showed that strains LAB-08 and R2 became dominant simultaneously, whereas strain P-10 was a minor population. This phenomenon was observed before and after the phenol-supply stoppage. The kinetic parameters for phenol of the SBC changed before and after the phenol-supply stoppage, which suggests a change in functional roles of strains in the SBC. Transcriptional levels of phenol hydroxylase and catechol dioxygenases of three strains were monitored by reverse-transcription qPCR (RT-qPCR). The RT-qPCR analyses revealed that all strains shared phenol and survived independently before the phenol-supply stoppage. After the stoppage, strain P-10 would incur the cost for degradation of phenol and catechol, whereas strains LAB-08 and R2 seemed to be cheaters using metabolites, indicating the development of the metabolic network. These results indicated that it is important for the management and redesign of microbial communities to understand the metabolism of bacterial communities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.