Abstract

This paper investigates the coexisting fast-scale and slow-scale bifurcations in simple dc/dc converters under peak current-mode control operating in continuous conduction mode. Our focus is the boost converter as it is a representative form of dc/dc converter requiring current-mode control. Effects of varying the input voltage and some chosen parameters on the qualitative behavior of the system are studied in detail. Analysis based on a nonlinear simplified discrete-time model, which takes into account the effects of parasitics, is performed to investigate the coexistence of fast-scale and slow-scale bifurcations, and to identify the different types of bifurcation. Boundaries of stable region, slow-scale bifurcation region, fast-scale bifurcation region, coexisting fast and slow-scale bifurcation region are identified. Experimental measurements of the boost converter are provided for verification of the analytical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.