Abstract

The BN/KL region in the Orion molecular cloud is an archetype for the study of the formation of stars much more massive than the Sun. This region contains luminous young stars and protostars but, like most star-forming regions, is difficult to study in detail because of the obscuring effects of dust and gas. Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars accrete gas from rotating equatorial disks and shed angular momentum by ejecting gas in bipolar outflows. The main source of the outflow in the BN/KL region may be an object known as radio source I, which is commonly believed to be surrounded by a rotating disk of molecular material. Here we report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I. We show that within 60 AU of the source (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. A slower outflow, close to the equatorial plane of the protostellar system, extends to radii of 1,000 AU.

Highlights

  • We report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I; we show that within 60 AU (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk

  • Our basic expectations are shaped to some extent by the present theoretical picture of star formation, the cornerstone of which is that protostars acrete gas from rotating equatorial disks, and shed angular momentum by ejecting gas in bipolar outflows

  • The main source of the outflow in the BN/KL region 3,4,5 may be an object known as radio source I6, which is commonly believed to be surrounded by a rotating disk of molecular material 7,8,9

Read more

Summary

Introduction

We report high-resolution observations of silicon monoxide (SiO) and water maser emission from the gas surrounding source I; we show that within 60 AU (about the size of the Solar System), the region is dominated by a conical bipolar outflow, rather than the expected disk. The previous widely accepted model, in which the SiO masers lie in a rotating, expanding, and inclined disk[7,8,9], does not fit our high-resolution VLBA maps.

Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call