Abstract

We demonstrate that precise solutions of the convective flow equations for a compressible conducting viscous fluid can give degenerate stationary states. That is, two or more completely different stable flows can result for fixed stationary boundary conditions. We characterize these complex flows with finite-difference, smooth-particle methods, and high-order implicit methods. The fluids treated here are viscous conducting gases, enclosed by thermal boundaries in a gravitational field{emdash}the {open_quotes}Rayleigh-B{acute e}nard problem.{close_quotes} Degenerate solutions occur in both two- and three-dimensional simulations. This coexistence of solutions is a macroscopic manifestation of the strange attractors seen in atomistic systems far from equilibrium. {copyright} {ital 1997} {ital The American Physical Society}

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.