Abstract

In this paper, a novel 4D fractional-order chaotic system is proposed, and the corresponding dynamics are systematically investigated by considering both fractional-order and traditional system parameters as bifurcation parameters. When varying the traditional system parameters, this system exhibits some conspicuous characteristics. For example, four separate single-wing chaotic attractors coexist, and they will pairwise combine, resulting in a pair of double-wing attractors. More distinctively, by choosing the specific control parameters, transitions from a four-wing attractor to a pair of double-wing attractors to four coexisting single-wing attractors are observed, which means that the novel fractional-order system experiences an unusual and striking double-dip symmetry recovering crisis. However, numerous studies have shown that the fractional differential order has an important effect on the dynamical behavior of a fractional-order system. However, these studies are based only on numerical simulations. Thus, the design of a variable fractional-order circuit to investigate the influence of the order on the dynamical behavior of the fractional-order chaotic circuit is urgently needed. Varying with the order, coexisting period-doubling bifurcation modes appear, which suggests that the orbits have transitions from a coexisting periodic state to a coexisting chaotic state. A variable fractional-order circuit is designed, and the experimental observations are found to be in good agreement with the numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.