Abstract
In this lesson we consider discrete time dynamical systems with coexisting attractors, and we analyze the problem of the structure of the boundaries that separate their basins of attraction. This problem may become particularly challenging when the discrete dynamical system is represented by the iteration of a noninvertible map, because in this case nonconnected basins can be obtained, formed by several (even infinitely many) disjoint portions. Measure theoretic attractors, known as Milnor attractors, are also described, together with riddled basins, an extreme form of complex basin’s structure that can be observed in the presence of such attractors. Some tools for the study of global bifurcations that lead to the creation of complex structures of the basins are described, as well as some applications in discrete time models taken from economic dynamics.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.