Abstract

Populations evolve in spatially heterogeneous environments. While a certain trait might bring a fitness advantage in some patch of the environment, a different trait might be advantageous in another patch. Here, we study the Moran birth–death process with two types of individuals in a population stretched across two patches of size N , each patch favouring one of the two types. We show that the long-term fate of such populations crucially depends on the migration rate μ between the patches. To classify the possible fates, we use the distinction between polynomial (short) and exponential (long) timescales. We show that when μ is high then one of the two types fixates on the whole population after a number of steps that is only polynomial in N . By contrast, when μ is low then each type holds majority in the patch where it is favoured for a number of steps that is at least exponential in N . Moreover, we precisely identify the threshold migration rate μ ⋆ that separates those two scenarios, thereby exactly delineating the situations that support long-term coexistence of the two types. We also discuss the case of various cycle graphs and we present computer simulations that perfectly match our analytical results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.