Abstract

Formation of vitreous ice during rapid compression of water at room temperature is important for biology and the study of biological systems. Here, we show that Raman spectra of rapidly compressed water at greater than 1 GPa at room temperature exhibits the signature of high-density amorphous ice, whereas the X-ray diffraction (XRD) pattern is dominated by crystalline ice VI. To resolve this apparent contradiction, we used molecular dynamics simulations to calculate full vibrational spectra and diffraction patterns of mixtures of vitreous ice and ice VI, including embedded interfaces between the two phases. We show quantitatively that Raman spectra, which probe the local polarizability with respect to atomic displacements, are dominated by the vitreous phase, whereas a small amount of the crystalline component is readily apparent by XRD. The results of our combined experimental and theoretical studies have implications for detecting vitreous phases of water, survival of biological systems under extreme conditions, and biological imaging. The results provide additional insight into the stable and metastable phases of H2O as a function of pressure and temperature, as well as of other materials undergoing pressure-induced amorphization and other metastable transitions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call