Abstract

Two coexisting families of sub-harmonic resonances can be induced at different forcing frequencies in a time-delayed nonlinear system having quadratic nonlinearities. They occur in the region where two stable bifurcating periodic solutions coexist in the corresponding autonomous system following two-to-one resonant Hopf bifurcations of the trivial equilibrium. The forced response is found to demonstrate small- and large-amplitude quasi-periodic motion under the family of sub-harmonic resonances related to Hopf bifurcation frequencies, and large-amplitude periodic and quasi-periodic motion under the family of sub-harmonic resonances associated with the shifted Hopf bifurcation frequencies. The family of sub-harmonic resonances related to Hopf bifurcation frequencies may cease to exist with the loss of the initially established frequency relationship of sub-harmonic resonances when the magnitude of periodic excitation is beyond a certain value. This will lead to a jump phenomenon from small- to large-amplitude quasi-periodic motion. Bifurcation diagrams, time trajectories and frequency spectra are numerically obtained to characterize the sub-harmonic resonances of the time-delayed nonlinear system around the critical point of the resonant Hopf bifurcations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call