Abstract

We report a combined theoretical and experimental study on TaIrTe4, a potential candidate of the minimal model of type-II Weyl semimetals. Unexpectedly, an intriguing node structure with twelve Weyl points and a pair of nodal lines protected by mirror symmetry was found by first-principle calculations, with its complex signatures such as the topologically non-trivial band crossings and topologically trivial Fermi arcs cross-validated by angle-resolved photoemission spectroscopy. Through external strain, the number of Weyl points can be reduced to the theoretical minimum of four, and the appearance of the nodal lines can be switched between different mirror planes in momentum space. The coexistence of tunable Weyl points and nodal lines establishes ternary transition-metal tellurides as a unique test ground for topological state characterization and engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.