Abstract

Many microorganisms propel themselves through their fluid environment by means of multiple rotating flagella that self-organize to form bundles, a process that is complex and poorly understood. In the present work, the bundling behavior of a pair of flexible flagella, each driven by a constant torque motor, is investigated, using a mathematical model incorporating the fluid motion generated by each flagellum as well as the finite flexibility of the flagella. The initial stage of bundling is driven purely by hydrodynamics but the final state of the bundle is determined by a nontrivial balance between hydrodynamics and elasticity. As the flexibility of the flagella increases a regime is found where, depending on initial conditions, one finds bundles that are either tight, with the flagella in mechanical contact, or loose, with the flagella intertwined but not touching. That is, multiple coexisting states of bundling are found. The parameter regime (in terms of flexibility and distance between motors) at which this multiplicity occurs is comparable to the parameters for a number of bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.