Abstract

In this paper, we show the coexistence of the bipolar and unipolar resistive-switching modes in NiO cells realized using an optimized oxidation process of a Ni blanket layer used as the bottom electrode. The two switching modes can be activated independent of the cell switching history provided the appropriate programming conditions are applied. The bipolar and unipolar switching modes are discussed as driven by electrochemical- and thermal-based mechanisms, respectively. The switching versatility between these two modes is demonstrated both for large oxidized Ni films and for Ni films oxidized at the bottom of small dimension contact holes. The perspective of selecting the desired switching mode in a scaled device made in a small diameter single hole is highly attractive because the specific advantages of the two modes broaden the application scope of the cell and enable larger flexibility in terms of memory architecture.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.