Abstract

Enabling the integration of aerial mobile users into existing cellular networks would make possible a number of promising applications. However, current cellular networks have not been designed to serve aerial users, and hence an exploration of design parameters is required in order to allow network providers to modify their current infrastructure. As a first step in this direction, this paper provides an in-depth analysis of the coverage probability of the downlink of a cellular network that serves both aerial and ground users. We present an exact mathematical characterization of the coverage probability, which includes the effect of base stations (BSs) height, antenna pattern and drone altitude for various type of urban environments. Interestingly, our results show that the favorable propagation conditions that aerial users enjoys due to its altitude is also their strongest limiting factor, as it leaves them vulnerable to interference. This negative effect can be substantially reduced by optimizing the flying altitude, the base station height and antenna down-tilt. Moreover, lowering the base station height and increasing down-tilt angle are in general beneficial for both terrestrial and aerial users, pointing out a possible path to enable their coexistence.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.