Abstract
As an intrinsically layered material, FeSe has been extensively explored for potentially revealing the underlying mechanisms of high transition temperature (high-Tc) superconductivity and realizing topological superconductivity and Majorana zero modes. Here we use first-principles approaches to identify that the cobalt pnictides of CoX (X = As, Sb, Bi), none of which is a layered material in bulk form. Nevertheless, all can be stabilized as monolayered systems either in freestanding form or supported on the SrTiO3(001) substrate. We further show that each of the cobalt pnictides may potentially harbor high-Tc superconductivity beyond the Cu- and Fe-based superconducting families, and the underlying mechanism is inherently tied to their isovalency nature with the FeSe monolayer. Most strikingly, each of the monolayered CoX's on SrTiO3 is shown to be topologically nontrivial, and our findings provide promising new platforms for realizing topological superconductors in the two-dimensional limit.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.