Abstract

We present a combined M06 functional calculation and ab initio molecular dynamics simulation study of an excess electron (EE) in a microhydrated aromatic complex (modeled by benzene (Bz)-water binary clusters, Bz(H(2)O)(n)). Calculated results illustrate that Bz ring and water clusters are indeed linked through the π···HO interactions in the neutral Bz(H(2)O)(n) (n = 1-8) clusters, and the size of the water cluster does not influence the nature of its interaction with the π system for the oligo-hydrated complexes. The states and the dynamics of an EE trapped in such Bz-water clusters were also determined. All of possible localized states for the EE can be roughly classified into two types: (i) single, ring-localized states (the Bz-centered valence anions) in which an EE occupies the LUMO of the complexes originating from the LUMO (π*) of the Bz ring, and the π···HO interactions are enhanced for increase of electron density of the Bz ring. In this mode, the carbon skeleton of the Bz part is significantly deformed due to increase of electron density and nonsymmetric distribution of electron density induced by the interacting H-O bonds; (ii) solvated states, in which an EE is trapped directly as a surface state by the dangling hydrogen atoms of water molecules or as a solvated state in a mixed cavity formed by Bz and water cluster. In the latter case, Bz may also participate in capturing an EE using its C-H bonds in the side edge of the aromatic ring as a part of the cavity. In general, a small water cluster is favorable to the Bz-centered valence anion state, while a large one prefers a solvated electron state. Fluctuations and rearrangement of water molecules can sufficiently modify the relative energies of the EE states to permit facile conversion from the Bz-centered to the water cluster-centered state. This indicates that aromatic Bz can be identified as a stepping stone in electron transfer and the weak π···HO interaction plays an important role as the driving force in conversion of the two states.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.