Abstract
The numerical study of a glycolytic model formed by a system of three delay differential equations reveals a multiplicity of stable coexisting states: birhythmicity, trirhythmicity, hard excitation and quasiperiodic with chaotic regimes. For different initial functions in the phase space one may observe the coexistence of two different quasiperiodic motions, the existence of a stable steady state with a stable torus, and the existence of a strange attractor with different stable regimes (chaos with torus, chaos with bursting motion, and chaos with different periodic regimes). For a single range of the control parameter values our system may exhibit different bifurcation diagrams: in one case a Feigenbaum route to chaos coexists with a finite number of successive periodic bifurcations, in other conditions it is possible to observe the coexistence of two quasiperiodicity routes to chaos. These studies were obtained both at constant input flux and under forcing conditions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.