Abstract

In the present paper, a new memristor based oscillator is obtained from the autonomous Jerk circuit [Kengne et al., Nonlinear Dynamics (2016) 83: 751̶765] by substituting the nonlinear element of the original circuit with a first order memristive diode bridge. The model is described by a continuous time four-dimensional autonomous system with smooth nonlinearities. Various nonlinear analysis tools such as phase portraits, time series, bifurcation diagrams, Poincaré section and the spectrum of Lyapunov exponents are exploited to characterize different scenarios to chaos in the novel circuit. It is found that the system experiences period doubling and crisis routes to chaos. One of the major results of this work is the finding of a window in the parameters’ space in which the circuit develops hysteretic behaviors characterized by the coexistence of four different (periodic and chaotic) attractors for the same values of the system parameters. Basins of attractions of various coexisting attractors are plotted showing complex basin boundaries. As far as the authors’ knowledge goes, the novel memristive jerk circuit represents one of the simplest electrical circuits (no analog multiplier chip is involved) capable of four disconnected coexisting attractors reported to date. Both PSpice simulations of the nonlinear dynamics of the oscillator and laboratory experimental measurements are carried out to validate the theoretical analysis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call