Abstract

High mobility, low latency and high throughput requirements in intelligent transport systems (ITS) have paved the way for the development of new wireless communication technologies. Therefore, the 5.9 GHz band has been assigned to ITS applications under two main technologies. Europe's ITS-G5 is one such technology, which is based on IEEE 802.11p. The other alternative technology is 3GPP's cellular vehicle-to-everything (C-V2X). Both of these technologies have their inherent advantages and disadvantages due to dissimilarities in their physical (PHY) and media access control (MAC) layer architectures. Therefore, the applicability of each technology will vary depending on the situation. While previous work has been mainly focused on the comparison of two technologies, in this paper, we investigate the benefit of the co-existence of both of these technologies for a V2I downlink scenario in a road-side unit (RSU) placed at the center of an urban road intersection. We propose an optimization scheme to achieve the best minimum signal-to-interference-plus-noise ratio (SINR) performance for the RSU while providing connectivity to the maximum possible number of vehicles. Our analysis shows that ITS-G5 should be given priority when communicating with larger number of vehicles while C-V2X should be given priority when less number of vehicles are requesting to connect with the RSU.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.