Abstract

Microiontophoretic studies using cats anesthetized with α-chloralose were performed to determine whether or not dopamine D-1 and D-2 receptors co-exist in the same caudate nucleus (CN) neurons that receive inputs from the substantia nigra (SN), and in which spikes elicited by SN stimulation were blocked by domperidone, a selective D-2 antagonist. Iontophoretic application of dopamine produced a dose-dependent inhibition of spontaneous firing in 2 of 4 spontaneously active CN neurons and an increase in firing in the remaining 2 neurons. However, dopamine inhibited the glutamate-induced firing in 31 of 32 CN neurons that were not spontaneously active. Similar inhibition with iontophoretically applied SKF 38393, a selective D-1 agonist, was observed in 33 of 34 spontaneously inactive neurons tested. When the effects of dopamine, SKF 38393 and bromocriptine (D-2 agonist) were examined on the same CN neurons, the inhibitory effects of both dopamine and SKF 38393 were seen in 14 of 15 neurons, and both an inhibition by SKF 38393 and an excitation by bromocriptine were observed in 15 of 17 neurons. The inhibitory effects of dopamine and SKF 38393 were antagonized by haloperidol and SCH 23390 (D-1 antagonist) without being affected by domperidone. Furthermore, the dopamine-induced inhibition was converted to an excitation during simultaneous application of SCH 23390 in 6 of 10 CN neurons, and this excitation was antagonized by domperidone. These results strongly suggest that the inhibitory D-1 and excitatory D-2 receptors co-exist on the same CN neurons receiving inputs from the SN.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call