Abstract

In one-dimensional Hermitian tight-binding models, mobility edges separating extended and localized states can appear in the presence of properly engineered quasi-periodical potentials and coupling constants. On the other hand, mobility edges don't exist in a one-dimensional Anderson lattice since localization occurs whenever a diagonal disorder through random numbers is introduced. Here, we consider a nonreciprocal non-Hermitian lattice and show that the coexistence of extended and localized states appears with or without diagonal disorder in the topologically nontrivial region. We discuss that the mobility edges appear basically due to the boundary condition sensitivity of the nonreciprocal non-Hermitian lattice.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.