Abstract

Dopamine D3 R are widely expressed in basal ganglia where interact with D1 R. D3 R potentiate cAMP accumulation and GABA release stimulated by D1 R in striatonigral neurons through "atypical" signaling. During dopaminergic denervation, D3 R signaling changes to a "typical" in which antagonizes the effects of D1 R, the mechanisms of this switching are unknown. D3 nf splice variant regulates membrane anchorage and function of D3 R and decreases in denervation; thus, it is possible that D3 R signaling switching correlates with changes in D3 nf expression and increases of membranal D3 R that mask D3 R atypical effects. We performed experiments in unilaterally 6-hydroxydopamine lesioned rats and found a decrease in mRNA and protein of D3 nf, but not of D3 R in the denervated striatum. Proximity ligation assay showed that D3 R-D3 nf interaction decreased after denervation, whereas binding revealed an increased Bmax in D3 R. The new D3 R antagonized cAMP accumulation and GABA release stimulated by D1 R; however, in the presence of N-Ethylmaleimide (NEM), to block Gi protein signaling, activation of D3 R produced its atypical signaling stimulating D1 R effects. Finally, we investigated if the typical and atypical effects of D3 R modulating GABA release are capable of influencing motor behavior. Injections of D3 R agonist into denervated nigra decreased D1 R agonist-induced turning behavior but potentiated it in the presence of NEM. Our data indicate the coexistence of D3 R typical and atypical signaling in striatonigral neurons during denervation that correlated with changes in the ratio of expression of D3 nf and D3 R isoforms. The coexistence of both atypical and typical signaling during denervation influences motor behavior.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.