Abstract

Antiadhesion performance, stretchability, and transparency are highly desirable properties for materials and devices in numerous applications. However, the existing strategies for imparting materials with antiadhesion performance generally induce rigidity and opacity, and principle is yet to be provided for designing materials that combine these important parameters. Here, we show that four factors including a low surface energy, appropriate cross-linking, availability of a homogeneous and amorphous composite, and a smooth material surface can be used to design an intrinsically stretchable and transparent polymer film with antiadhesion performance against various liquids including water, diiodomethane, hexadecane, cooking oil, and pump oil. The film can be obtained via simply molding a waterborne polymer network at ambient temperature. Furthermore, the film can retain its antiadhesion performance and outstanding transparency even when it is subjected to large mechanical deformations reaching up to 1800%, and its maximal fracture strain exceeds 3000%. These design concepts offer a general platform for achieving multiple material functionalities, and may open new avenues for the surface functionalization of stretchable materials and devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.