Abstract

We perform electrical field effect measurements at 4 K on insulating granular aluminium thin films. When the samples size is reduced below ≃100 μm, reproducible and stable conductance fluctuations are seen as a function of the gate voltage. Our results suggest that these fluctuations reflect the incomplete self-averaging of largely distributed microscopic resistances. We also study the anomalous field effect (conductance dip) already known to exist in large samples and its slow relaxation in the presence of the conductance fluctuations. Within our measurements accuracy, the two phenomena appear to be independent of each other, like two additive contributions to the conductance. We discuss the possible physical meaning of this independence and in particular whether or not this observation is in favor of an electron glass interpretation of slow conductance anomaly relaxations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.