Abstract
In active nematic liquid crystals, activity is able to drive chaotic spatiotemporal flows referred to as active turbulence. Active turbulence has been characterized through theoretical and experimental work as a low Reynolds number phenomenon. We show that, in two dimensions, the active forcing alone is able to trigger hydrodynamic turbulence leading to the coexistence of active and inertial turbulence. This type of flow develops for sufficiently active and extensile flow-aligning nematics. We observe that the combined effect of an extensile nematic and large values of the flow-aligning parameter leads to a broadening of the elastic energy spectrum that promotes a growth of kinetic energy able to trigger an inverse energy cascade.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.