Abstract

Some photonic systems support bound states in the continuum (BICs) that have infinite lifetimes, although their frequencies and momenta are matched to vacuum modes. Using a prototypical system that can be treated analytically, we show that each of these BICs always splits into a pair of new type BIC and lasing threshold mode when a parity-time (PT)-symmetric perturbation is introduced. The radiation loss at the lasing threshold is exactly balanced by the net gain of the particles. These PT symmetry-induced BICs are different from ordinary BICs, as they can be excited by an external source but do not radiate, and they carry a different quality factor divergence rate from that of the ordinary BICs. While most of the attention of PT-symmetric systems is captured by the coalescence of modes at exceptional points, the splitting of ordinary BICs is a new phenomenon that illustrates the rich physics embedded in PT-symmetric systems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.