Abstract
AbstractThe objective of the study was to test the feasibility of coexistence between genetically modified (GM) and non‐GM maize under real‐life agronomical conditions. GM hybrid maize with the event MON810 (Bt maize) was drilled at 30 sites in fields surrounded by near isogenic conventional maize, although only 27 sites could be finally evaluated. Field sizes of Bt maize varied between 0.3 and 23 ha, and the flowering period of the Bt and conventional maize was synchronous. At some sites, different planting dates of GM and non‐GM maize or an earlier ripening conventional maize were tested in additional strips to obtain altered flowering and thereby reduce cross‐pollination. The overlapping of flowering periods was successfully avoided only at two sites where non‐GM maize was planted 25 or 28 days later. During harvest, samples were taken from the conventional maize in strips at distances of 0–10, 20–30, and 50–60 m to the Bt maize fields to assess the GM DNA content as a function of distance. Sampled materials included chaffed plant material intended for silage (18 sites), grains (eight sites), or crushed husks and cobs (one site). Wind effects were taken into account by sampling in all four compass directions. Quantitative PCR was used to detect the event specific MON810 DNA sequence in sampled materials. The analysis was conducted by two certified independent diagnostic testing companies selected in a pre‐test. Taking averages over all compass directions and the two laboratories no samples collected beyond 10 m had levels of GM above the threshold of 0.9 %. In conclusion, the data indicate that coexistence of GM and conventional maize is possible under real‐life large‐scale agronomical conditions. Levels of GM DNA in harvested grain resulting from outcrossing can be managed to levels below 0.9 % by simply planting 20 m of conventional maize as a pollen barrier between adjacent fields.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.