Abstract

Magnetization, specific heat, magnetic resonance and neutron diffraction measurements are used to study the magnetic structure of KFe(MoO4)2. This stacked triangular antiferromagnet (TN=2.5 K) demonstrates an unusual breaking of the spin system into two intercalated and almost independent 2D subsystems. One is a collinear antiferromagnet with a simple spin-flop behavior. The other is a spiral magnet. The spin structure may be explained assuming two types of inequivalent magnetic planes with distorted triangular lattices of Fe3+(S=5/2) ions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.