Abstract

In this paper, a coevolutionary particle-swarmoptimization (PSO) algorithm associating with the artificial immune principle is proposed. In the proposed algorithm, the wholepopulation is divided into two kinds of subpopulations consisting of one elite subpopulation and several normal subpopulations. The best individual of each normal subpopulation will be memorized into the elite subpopulation during the evolution process. A hybrid method, which creates new individuals by using three different operators, is presented to ensure the diversity of all the subpopulations. Furthermore, a simple adaptive wavelet learning operator is utilized for accelerating the convergence speed of the pbest particles. The improved immune-clonal-selection operator is employed for optimizing the elite subpopulation, while the migration scheme is employed for the information exchange between elite subpopulation and normal subpopulations. The performance of the proposed algorithm is verified by testing on a suite of standard benchmark functions, which shows faster convergence and global search ability. Its performance is further evaluated by its application to multiparameter estimation of permanentmagnet synchronous machines, which shows that its performance significantly outperforms existing PSOs. The proposed algorithm can estimate the machine dq-axis inductances, stator winding resistance, and rotor flux linkage simultaneously.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.