Abstract
The energy landscape used by nature over evolutionary timescales to select protein sequences is essentially the same as the one that folds these sequences into functioning proteins, sometimes in microseconds. We show that genomic data, physical coarse-grained free energy functions, and family-specific information theoretic models can be combined to give consistent estimates of energy landscape characteristics of natural proteins. One such characteristic is the effective temperature T(sel) at which these foldable sequences have been selected in sequence space by evolution. T(sel) quantifies the importance of folded-state energetics and structural specificity for molecular evolution. Across all protein families studied, our estimates for T(sel) are well below the experimental folding temperatures, indicating that the energy landscapes of natural foldable proteins are strongly funneled toward the native state.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.