Abstract
Alpha-synuclein lies at the center of Parkinson’s disease etiology, and polymorphisms in the gene for the microtubule-associated protein tau are risk factors for getting the disease. Tau and a-synuclein interact in vitro, and a-synuclein can also compete with tau binding to microtubules. To test whether these interactions might be part of their natural biological functions, a correlated mutation analysis was performed between tau and a-synuclein, looking for evidence of coevolution. For comparison, analyses were also performed between tau and b- and g-synuclein. In addition, analyses were performed between tau and the synuclein proteins and the neuronal tubulin proteins. Potential correlated mutations were detected between tau and a-synuclein, one involving an a-synuclein residue known to interact with tau in vitro, Asn122, and others involving the Parkinson’s disease-associated mutation A53T. No significant correlated mutations were seen between tau and b- and g-synuclein. Tau showed potential correlated mutations with the neuron-specific bIII-tubulin protein, encoded by the TUBB3 gene. No convincing correlated mutations were seen between the synuclein and tubulin proteins, with the possible exception of b-synuclein with bIVa-tubulin, encoded by the TUBB4A gene. While the correlated mutations between tau and a-synuclein suggest the two proteins have coevolved, additional study will be needed to confirm that their interaction is part of their normal biological function in cells.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.