Abstract

In this paper, we investigate a networked prisoner's dilemma game where individuals' strategy-selection time scale evolves based on their historical learning information. We show that the more times the current strategy of an individual is learnt by his neighbors, the longer time he will stick on the successful behavior by adaptively adjusting the lifetime of the adopted strategy. Through characterizing the extent of success of the individuals with normalized payoffs, we show that properly using the learned information can form a positive feedback mechanism between cooperative behavior and its lifetime, which can boost cooperation on square lattices and scale-free networks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.