Abstract

Double-strand breaks (DSB), the most difficult to repair DNA damage, are mainly repaired by non-homologous end-joining (NHEJ) or homologous recombination (HR). Previous studies seem to indicate that primates, and particularly humans, have a better NHEJ system. A distinctive feature of the primate lineage (beside longevity) is encephalization, i.e., the expansion of the brain relative to body mass (BM). Using existing transcriptome data from 34 mammalian species, we investigated the possible correlations between the expression of genes involved in NHEJ and encephalization, BM, and longevity. The same was done also for genes involved in the HR pathway. We found that, while HR gene expression is better correlated with longevity, NHEJ gene expression is strongly (and better) correlated with encephalization. Since the brain is composed of postmitotic cells, DSB repair should be mainly performed by NHEJ in this organ. Therefore, we interpret the correlation we found as an indication that NHEJ efficiency coevolved with encephalization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.