Abstract
Catalytic RNAs are often regarded as molecular fossils from the RNA World, yet it is usually difficult to get more specific information about their evolution. Here we have investigated the coevolution of group II intron RNA structures with their intron-encoded reverse transcriptases (RTs). Unlike group I introns, there has been no obvious reshuffling between intron RNA structures and ORFs. Of the six classes of intron structures that encode ORFs, three are conventional forms of group II A1, B1, and B2 secondary structures, whereas the remaining classes are bacterial, are possibly associated with the most primitive ORFs, and have unusual features and hybrid features of group IIA and group IIB intron structures. Based on these data, we propose a new model for the evolution of group II introns, designated the retroelement ancestor hypothesis, which predicts that the major RNA structural forms of group II introns developed through coevolution with the intron-encoded protein rather than as independent catalytic RNAs, and that most ORF-less introns are derivatives of ORF-containing introns. The model is supported by the distribution of ORF-containing and ORF-less introns, and by numerous examples of ORF-less introns that contain ORF remnants.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.