Abstract

The concept of coevolution was first developed by Darwin, who used it to explain how pollinators and food-rewarding flowers involved in specialized mutualisms could, over time, develop long tongues and deep tubes, respectively. He famously predicted that Angraecum sesquipedale, a long-spurred Malagasy orchid, must be pollinated by a hawkmoth with an exceptionally long tongue. Darwin’s idea of a coevolutionary “race” was championed by contemporary naturalists, including Alfred Wallace, and a hawkmoth fitting the expected tongue-length profile was eventually discovered in Madagascar during the early twentieth century. However, strong empirical support for the mechanism behind Darwin’s coevolutionary model has been forthcoming only in the past two decades. It is now established that selection often strongly favors plants with floral tubes that exceed the length of their pollinator’s tongues. There is also evidence that pollinators gain an energetic benefit from having tongues that enable them to consume most or all of the nectar in deep tubular flowers. Alternative explanations for the evolution of long pollinator tongues, such as evasion of predators that use flowers as ambush sites, are considered much less compelling and lack quantitative support. Another important advance in coevolution research has been the development of approaches that explicitly predict a geographical mosaic of coevolution. The expectation that coevolution can lead to geographical diversification and trait covariation among strongly interacting organisms is strongly supported by studies of long-proboscid fly and oil-bee pollination systems in South Africa. Macro- and microevolutionary studies of pollination systems suggest that coevolution can operate alongside other one-sided evolutionary processes, such as shifts, in shaping plant and pollinator traits.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call