Abstract

Controlling coercivity and understanding how it is affected by the microstructure are of essential importance for practical application of FePt thin films as a recording media. In this study, the small size of ordered domain, lower coercivity and weak intergranular exchange coupling interaction in TiNi-doped L10 FePt thin films are obtained. The TiNi additions maybe diffuse out of the FePt lattice into FePt grain boundaries, which separate FePt grains. The doping in grain boundary provides the nucleation center of reversed domain, which leads both nucleation-type and pinning-type mechanism to coexist in magnetization reversal processes for TiNi-doped FePt thin films. The decrease of anisotropy constant and nucleation field of reversed domain provides an explanation for the coercivity reduction of FePt thin films after TiNi doping.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call