Abstract

We present new second-kind integral-equation formulations of the interior and exterior Dirichlet problems for Laplace’s equation. The operators in these formulations are both continuous and coercive on general Lipschitz domains in Rd\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\mathbb {R}^d$$\\end{document}, d≥2\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$d\\ge 2$$\\end{document}, in the space L2(Γ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2(\\Gamma )$$\\end{document}, where Γ\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\Gamma $$\\end{document} denotes the boundary of the domain. These properties of continuity and coercivity immediately imply that (1) the Galerkin method converges when applied to these formulations; and (2) the Galerkin matrices are well-conditioned as the discretisation is refined, without the need for operator preconditioning (and we prove a corresponding result about the convergence of GMRES). The main significance of these results is that it was recently proved (see Chandler-Wilde and Spence in Numer Math 150(2):299–371, 2022) that there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which the operators in the standard second-kind integral-equation formulations for Laplace’s equation (involving the double-layer potential and its adjoint) cannot be written as the sum of a coercive operator and a compact operator in the space L2(Γ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$L^2(\\Gamma )$$\\end{document}. Therefore there exist 2- and 3-d Lipschitz domains and 3-d star-shaped Lipschitz polyhedra for which Galerkin methods in L2(Γ)\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$${L^2(\\Gamma )}$$\\end{document} do not converge when applied to the standard second-kind formulations, but do converge for the new formulations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.