Abstract

In this paper l-methionine oxidation catalyzed by l-phenylalanine dehydrogenase from Rhodococcus sp. M4 was studied. It was found that the reaction equilibrium is shifted to the side of reduction, and it was therefore necessary to regenerate NAD + to increase l-methionine conversion. NADH oxidase from Lactobacillus brevis was used for that purpose. The enzyme was kinetically characterized. It was found that the enzyme is inhibited by NAD +. Hence, NADH oxidation catalyzed by NADH oxidase was described by the Michaelis–Menten equation which included anticompetitive NAD + inhibition. l-Methionine oxidation was described by formal double-substrate Michaelis–Menten model which included competitive product inhibition by NADH. 2-Oxo-4-methylthiobutyric acid reduction was described by formal three-substrate Michaelis–Menten kinetics which included competitive inhibition by NAD +. Experiments were carried out in the batch and in the continuously operated enzyme membrane reactor. 100% l-methionine conversion was achieved in the batch reactor. The conversion was lower in the continuously operated enzyme membrane reactor where enzyme deactivation occurred.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.