Abstract

Radiation enteropathy is one the most common clinical issue for patients receiving radiotherapy for abdominal/pelvic tumors which severely affect the quality of life of cancer patients due to dysplastic lesions (ischemia, ulcer, or fibrosis) that aggravate the radiation damage. Herein, this study demonstrated the prophylactic role of coenzyme Q10 (CoQ10), a powerful antioxidant, against radiotherapy-induced gastrointestinal injury. Male Sprague Dawley rats were divided into four groups: group 1 was defined as control, and group 2 was the irradiated group. Group 3 and 4 were CoQ10 control and radiation plus CoQ10 groups, respectively. CoQ10 (10 mg/kg) was orally administered for 10 days before 10 Gy whole-body radiation and was continued for 4 days post-irradiation. CoQ10 administration protected rats delivered a lethal dose of ϒ-radiation from changes in crypt-villus structures and promoted regeneration of the intestinal epithelium. CoQ10 attenuated radiation-induced oxidative stress by decreasing lipid peroxidation and increasing the antioxidant enzyme catalase activity and reduced glutathione level. CoQ10 also counteracts inflammatory response mediated after radiation exposure through downregulating intestinal NF-ĸB expression which subsequently decreased the level of inflammatory cytokine IL-6 and the expression of COX-2. Radiation-induced intestinal fibrosis confirmed via Masson's trichrome staining occurred through upregulating transforming growth factor (TGF)-β1 and matrix metalloproteinase (MMP)-9 expression, while CoQ10 administration significantly diminishes these effects which further confirmed the anti-fibrotic property of CoQ10. Therefore, CoQ10 is a promising radioprotector that could prevent intestinal complications and enhance the therapeutic ratio of radiotherapy in patients with pelvic tumors through suppressing the NF-kB/TGF-β1/MMP-9 signaling pathway.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.