Abstract
A typical quandary in geometric functions theory is to study a functional composed of amalgamations of the coefficients of the pristine function. Conventionally, there is a parameter over which the extremal value of the functional is needed. The present paper deals with consequential functional of this type. By making use of Hohlov operator, a new subclass [Formula: see text] of analytic functions defined ins the open unit disk is introduced. For both real and complex parameter, the sharp bounds for the Fekete–Szegö problems are found. An attempt has also been taken to found the sharp upper bound to the second and third Hankel determinant for functions belonging to this class. All the extremal functions are express in term of Gauss hypergeometric function and convolution. Finally, the sufficient condition for functions to be in [Formula: see text] is derived. Relevant connections of the new results with well-known ones are pointed out.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.