Abstract

To improve the stability and oxygen permeability of Ba0.6Sr0.4FeO3−δ (BSF)-based perovskite membranes, an Mg and Zr codoping strategy is proposed. The characterization by X-ray diffraction, Mossbauer spectroscopy and oxygen permeation measurements revealed that single-element Mg doping could improve the oxygen permeability of BSF-based membranes. However, in situ XRD measurements indicated that the single-element Mg doping exhibits a poor thermal stability at low oxygen partial pressure. Single-element Zr doping could improve the structure stability of BSF-based perovskites but lead to a serious decrease of oxygen permeability. Compared with the BSF-based perovskites doped by either Mg or Zr alone, Mg and Zr codoped perovskite Ba0.6Sr0.4Fe0.8Mg0.15Zr0.05O3−δ showed a better stability than single-element Mg doping and exhibited a higher oxygen permeability than single-element Zr doping. For the Mg and Zr codoped BSF, the oxygen permeation flux reached 0.78 mL min–1 cm–2 at 950 °C under an air/He oxygen par...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.