Abstract

Genus Clostridium is of the largest genus in class Clostridia. It is comprised of spore-forming, anaerobic, gram-positive organisms. The members of this genus include human pathogens to free-living nitrogen fixing bacteria. In the present study, we have performed a comparison of the choice of preferred codons, codon usage patterns, dinucleotide and amino acid usage pattern of 76 species of Genus Clostridium. We found the pathogenic clostridium species to have smaller AT-rich genomes as compared to opportunistic and non-pathogenic clostridium species. The choice of preferred and optimal codons was also influenced by genomic GC/AT content of the respective clostridium species. The pathogenic clostridium species displayed a strict bias in the codon usage, employing 35 of the 61 codons encoding for 20 amino acids. Comparison of amino acid usage revealed an increased usage of amino acids with lower biosynthetic cost by pathogenic clostridium species as compared to opportunistic and non-pathogenic clostridium species. Smaller genome, strict codon usage bias and amino acid usage lead to lower protein energetic cost for the clostridial pathogens. Overall, we found the pathogenic members of genus Clostridium to prefer small, AT-rich codons to reduce biosynthetic costs and match the cellular environment of its AT-rich human host.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call