Abstract

Codon optimization of nucleotide sequences is a widely used method to achieve high levels of transgene expression for basic and clinical research. Until now, immunological side effects have not been described. To trigger T cell responses against human papillomavirus, we incubated T cells with dendritic cells that were pulsed with RNA encoding the codon-optimized E7 oncogene. All T cell receptors isolated from responding T cell clones recognized target cells expressing the codon-optimized E7 gene but not the wild type E7 sequence. Epitope mapping revealed recognition of a cryptic epitope from the +3 alternative reading frame of codon-optimized E7, which is not encoded by the wild type E7 sequence. The introduction of a stop codon into the +3 alternative reading frame protected the transgene product from recognition by T cell receptor gene-modified T cells. This is the first experimental study demonstrating that codon optimization can render a transgene artificially immunogenic through generation of a dominant cryptic epitope. This finding may be of great importance for the clinical field of gene therapy to avoid rejection of gene-corrected cells and for the design of DNA- and RNA-based vaccines, where codon optimization may artificially add a strong immunogenic component to the vaccine.

Highlights

  • The expression of sufficient amounts of transgenic protein in a gene-modified cell is crucial in molecular biology and clinical biotechnology

  • Codon optimization has become a readily available tool to increase the expression of transgenes in basic research as well as clinical settings, but codon optimization may affect polypeptide sequences translated from the +2 and +3 alternative reading frames (ARFs)

  • We report that codon-optimization renders the HPV16 E7 oncogene artificially immunogenic via the generation of a cryptic epitope from an ARF, which does not exist in the wild type sequence

Read more

Summary

Introduction

The expression of sufficient amounts of transgenic protein in a gene-modified cell is crucial in molecular biology and clinical biotechnology. Since gene synthesis has become a time- and cost-efficient method for the design of nucleotide sequences, codon optimization has been established as a standard tool to maximize protein expression in a desired system. The genetic code for translating nucleotide sequences to proteins uses 64 nucleotide triplets (codons), which encode 20 amino acids and three translational stop signals. Cryptic T Cell Epitope by Codon Optimization design, data collection and analysis, decision to publish, or preparation of the manuscript

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call