Abstract
Codon optimization of the Bos taurus Chymosin gene (CYM) for its expression in Pichia pastoris was performed in this study. A synthetic CYM gene was designed in silico by replacing codons rarely used by P. pastoris with equivalent nucleotide combinations that codify for the same amino acid but that are more frequently encountered in the genome ofP. pastoris. A total of 332 nucleotides were modified to optimize 289 codons. The synthetic CYM gene was cloned into the expression vector pPICZαA and transformed into P. pastoris. The transformed strains were grown in artificial media supplemented with glycerol as a carbon source to increase biomass and then cultured in a similar medium replacing glycerol with methanol as a carbon source to initiate gene induction. Raw extracts of the growth media exhibited milk-clotting activity of 146.11SU/mL. Produced recombinant chymosin showed coagulant activityfrom 25 to 50°C, and within a pH range of 5-6.9, having optimum activity at 35-40°C, and pH 5.0. These results show that codon optimization is a viable strategy to improve CYM gene expression levels in P. pastoris for the production of recombinant chymosin.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.