Abstract
Consider a discrete source producing a sequence of message letters from a finite alphabet. A single-letter distortion measure is given by a non-negative matrix (d ij ). The entryd ij measures the ?cost? or ?distortion? if letteriis reproduced at the receiver as letterj. The average distortion of a communications system (source-coder-noisy channel-decoder) is taken to bed= ? i.j P ij d ij whereP ij is the probability ofibeing reproduced asj. It is shown that there is a functionR(d) that measures the ?equivalent rate? of the source for a given level of distortion. For coding purposes where a leveldof distortion can be tolerated, the source acts like one with information rateR(d). Methods are given for calculatingR(d), and various properties discussed. Finally, generalizations to ergodic sources, to continuous sources, and to distortion measures involving blocks of letters are developed. In this paper a study is made of the problem of coding a discrete source of information, given afidelity criterionor ameasure of the distortionof the final recovered message at the receiving point relative to the actual transmitted message. In a particular case there might be a certain tolerable level of distortion as determined by this measure. It is desired to so encode the information that the maximum possible signaling rate is obtained without exceeding the tolerable distortion level. This work is an expansion and detailed elaboration of ideas presented earlier [1], with particular reference to the discrete case. We shall show that for a wide class of distortion measures and discrete sources of information there exists a functionR(d) (depending on the particular distortion measure and source) which measures, in a sense, the equivalent rateRof the source (in bits per letter produced) whendis the allowed distortion level. Methods will be given for evaluatingR(d) explicitly in certain simple cases and for evaluatingR(d) by a limiting process in more complex cases. The basic results are roughly that it is impossible to signal at a rate faster thanC/R(d) (source letters per second) over a memoryless channel of capacityC(bits per second) with a distortion measure less than or equal tod. On the other hand, by sufficiently long block codes it is possible to approach as closely as desired the rateC/R(d) with distortion leveld. Finally, some particular examples, using error probability per letter of message and other simple distortion measures, are worked out in detail.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.