Abstract
We develop a unified performance metric and detailed analysis for hybrid automatic repeat request (HARQ) schemes based on incremental redundancy (IR) and Chase combining (CC). The general result is applicable to both symbol-based and bit-interleaved coded modulations, to HARQ processes based on rateless and fixed-rate mother codes, and IR schemes with and without a self-decodability restriction. The analysis shows that IR over CC coding gains tend to increase with the initial coding rate, but decrease with the signal-to-noise (SNR) variation between retransmissions. The gains can also be diminished when a fixed-rate mother code is used or when the self-decodability criterion is imposed. The theoretical prediction is compared with observed gains at 10% codeword error rates based on turbo-coding simulations. For scenarios with moderately varying SNR between retransmissions, the analytical model tracks actual simulation results very well. However, when the SNR varies widely and the systematic part of the turbo codeword is effectively erased, the CC scheme could, in fact, outperform some IR schemes. For these scenarios, which can be induced by fast time-varying fading or long retransmission delays, the self-decodable IR and the CC schemes prove to be more robust without much performance comprise. Finally, we discuss adaptive improvement to the conventional IR schemes based on the analytical result
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.