Abstract

An erasure channel with a fixed alphabet size q, where q Gt 1, is studied. It is proved that over any erasure channel (with or without memory), maximum distance separable (MDS) codes achieve the minimum probability of error (assuming maximum likelihood decoding). Assuming a memoryless erasure channel, the error exponent of MDS codes are compared with that of random codes. It is shown that the envelopes of these two exponents are identical for rates above the critical rate. Noting the optimality of MDS codes, it is concluded that random coding is exponentially optimal as long as the block size N satisfies N < q + 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.