Abstract

Neuronal populations in sensory cortex represent the time-changing sensory input through a spatiotemporal code. What are the rules that govern this code? We measured membrane potentials and spikes from neuronal populations in cat visual cortex (V1), through voltage-sensitive dyes and electrode arrays. We first characterized the population response to a single orientation. As response amplitude grew, population tuning width remained constant for membrane potential responses and became progressively sharper for spike responses. We then asked how these single-orientation responses combine to code for successive orientations. We found that they combine through simple linear summation. Linearity, however, is violated after stimulus offset, when responses exhibit an unexplained persistence. Thanks to linearity, the interactions between responses to successive stimuli are minimal. We demonstrate that higher cortical areas may reconstruct the stimulus sequence from V1 population responses through a simple instantaneous decoder. In area V1, therefore, spatial and temporal coding operate largely independently.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.