Abstract

Contexts play critical roles in many important aspects of an animal’s routine functions, such as the interpretation of incoming signals and retrieved memories. The roles played by prefrontal cortex (PFC) neurons in the coding of contexts have been largely studied in relation to aversive stimuli (such as foot shock in conditioned fear). Whether PFC neurons may code contexts that mice encounter in everyday life, such as their home cage, is poorly understood. Here, we report the identification of a subpopulation of ventral medial PFC (vmPFC) neurons which change their spike rates when mice enter or leave their home cages. Both increase (ON units) and decrease (OFF units) in spike rate were observed, with about 2/3 of neurons showing decrease and 1/3 showing increase. These changes were evident whenever transitions occur from home cage to a different environment regardless of the novelty of the environments. In addition, changes in firing rate were not affected when mice entering a context where fear conditioning had taken place after contextual or auditory/cued fear conditioning. Furthermore, we found that the differential spike rates of ON and OFF units appear to allow mice to recognize that they are inside their home cages. Together, vmPFC neural spiking appears to enable the encoding of “home cage”.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.