Abstract

The functional development of the auditory system across metamorphosis was examined by recording neural activity from the torus semicircularis of larval and postmetamorphic bullfrog froglets in response to amplitude-modulated sound. Multiunit activity in the torus semicircularis during early larval stages showed significant phase-locking to the envelopes of amplitude-modulated noise bursts, up to modulation rates as high as 250 Hz. Beginning at metamorphic climax and continuing into the froglet period, phase locking was restricted to the more limited frequency range characteristic of adult frogs. The onset of operation of the tympanic pathway does not reinstate the highly synchronous neural activity characteristic of the operation of the fenestral pathway. Modulation transfer functions based on spike count did not show tuning for modulation rate in early stage tadpoles, but a greater variety of shapes of these functions emerged as development proceeded. Most of the different kinds of modulation transfer functions seen in adult frogs were also observed in froglets, but band-pass functions were not as sharply peaked. These data suggest that different neural codes for processing of the periodicity of complex signals operate in early stage tadpoles than in postmetamorphic froglets.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call